Latest Entries
English | 繁體中文
[遊戲連結] Miss Kitty (Aristocrat)
滾輪大小: 4x5
連線方式: 50 Line
遊戲開發商: Aristocrat
遊戲特色: 黏性百搭
在計算免費遊戲的時候,因為每一條線被百搭黏住的機率是相同的,因此每條線的轉移矩陣都是相同的,計算時只需要考慮一條線就可以了。
首先將R2~R5的百搭黏住機率算出來(紅底),接著定義16種可能出現的狀態並填入轉移機率(橙底),再去計算每一局的狀態機率(黃底)。
這邊有一個要搞清楚的地方是,每一局SPIN前及SPIN後的狀態機率是不一樣的,因此一定要弄清楚自己計算的是SPIN前還是SPIN後的機率。以這份試算表來講,我的局數是定義在SPIN前。(綠底)
最後將10局及15局的各個狀態機率加權過後就可以得到整個免費遊戲的各狀態平均機率了。
有了每個狀態的出現機率之後,再回頭去算每個狀態的期望值。
將各狀態的機率(紅底)與每個狀態的連線數(橙底)加權過後就可以得到整個免費遊戲的平均得分了。
注意:試算表中使用滾輪未必為遊戲真實滾輪。
模型教學12 - 黏性百搭 MissKitty (Aristocrat)
[GameLink] Miss Kitty (Aristocrat)
ReelSize: 4x5
Paylines: 50 Line
Provider: Aristocrat
Features: StickyWild
When calculating free game, because the probability of each line being stuck by the wild is the same, so the transition matrix of each line is the same, only one line needs to be considered in the calculation.
First calculate the sticky probability of R2~R5 (red background), then define 16 possible states and fill in the transition probability (orange background), and then calculate the state probability of each spin (yellow background).
One thing to be clarified here is that before-spin and after-spin state probabilities are different in each spin, so you must figure out whether you are calculating before-spin or after-spin probability. In terms of this spreadsheet is defined before SPIN. (Green background)
Finally, after weighting the probability of each state of 10 free spins and 15 free spins, the average probability of each state of the entire free game can be obtained.
After having the probability of each state, go back and calculate the expected payout of each state. After weighting the probability of each state (red background) and combos in each state (orange background), the average payout of the entire free game can be obtained.
Note: The reel strips used in the par sheet may not be the real strips of the game.
Parsheet_12 - Miss Kitty (Aristocrat)
ReelSize: 4x5
Paylines: 50 Line
Provider: Aristocrat
Features: StickyWild
Game Instructions
This is a very standard Markov matrix example game, the wild in free game will stick to the reel until the end of the free game.When calculating free game, because the probability of each line being stuck by the wild is the same, so the transition matrix of each line is the same, only one line needs to be considered in the calculation.
Model Descriptions
Base Game
Base game is a general 50-line game, and the wild will not appear in the first round.Free Game
Free game is divided into two steps to calculate. The first step is to calculate the transfer probability of each wild sticky state.First calculate the sticky probability of R2~R5 (red background), then define 16 possible states and fill in the transition probability (orange background), and then calculate the state probability of each spin (yellow background).
One thing to be clarified here is that before-spin and after-spin state probabilities are different in each spin, so you must figure out whether you are calculating before-spin or after-spin probability. In terms of this spreadsheet is defined before SPIN. (Green background)
Finally, after weighting the probability of each state of 10 free spins and 15 free spins, the average probability of each state of the entire free game can be obtained.
After having the probability of each state, go back and calculate the expected payout of each state. After weighting the probability of each state (red background) and combos in each state (orange background), the average payout of the entire free game can be obtained.
Simulation Result
There is some error (about 0.25%) between the simulation results and the spreadsheet. This is because the average sticky state of the free game will be affected by whether it is retrigger or not. (If there is a retrigger, there must be no sticky in the reel 1~3 of the previous 10 free spins, because there is no wild symbol for the retrigger frame.)File Download
Here is the par sheet of this game, if you are interested, you can download the par sheet file for research.Note: The reel strips used in the par sheet may not be the real strips of the game.
Parsheet_12 - Miss Kitty (Aristocrat)
[遊戲連結] Miss Kitty (Aristocrat)
滾輪大小: 4x5
連線方式: 50 Line
遊戲開發商: Aristocrat
遊戲特色: 黏性百搭
特色介紹
這是一個很標準的馬可夫矩陣教學範例遊戲,免費遊戲中的百搭會黏在滾輪上直到免費遊戲結束。在計算免費遊戲的時候,因為每一條線被百搭黏住的機率是相同的,因此每條線的轉移矩陣都是相同的,計算時只需要考慮一條線就可以了。
模型說明
主遊戲算法
主遊戲是一般的50線遊戲,並且百搭也不會出現在第一輪,沒有需要特別注意的地方。免費遊戲算法
免費遊戲分成兩個步驟來算,第一步要先算出每個百搭黏住狀態的轉移機率。首先將R2~R5的百搭黏住機率算出來(紅底),接著定義16種可能出現的狀態並填入轉移機率(橙底),再去計算每一局的狀態機率(黃底)。
這邊有一個要搞清楚的地方是,每一局SPIN前及SPIN後的狀態機率是不一樣的,因此一定要弄清楚自己計算的是SPIN前還是SPIN後的機率。以這份試算表來講,我的局數是定義在SPIN前。(綠底)
最後將10局及15局的各個狀態機率加權過後就可以得到整個免費遊戲的各狀態平均機率了。
有了每個狀態的出現機率之後,再回頭去算每個狀態的期望值。
將各狀態的機率(紅底)與每個狀態的連線數(橙底)加權過後就可以得到整個免費遊戲的平均得分了。
模擬結果
這款模擬結果跟試算表存在一些誤差(約0.25%),這是因為免費遊戲的平均鎖定狀態會受再觸發與否而影響。(如果有出現再觸發,則前面10局中必定有一局的前三輪不會出現鎖定,因為再觸發的盤面沒有百搭。)檔案下載
以上就是這一款遊戲的模型教學,有興趣的可以自行下載試算表研究注意:試算表中使用滾輪未必為遊戲真實滾輪。
模型教學12 - 黏性百搭 MissKitty (Aristocrat)
留言
想請教前輩,是否有:“免費遊戲中的黏性圖標,每個圖標都代表一份奬勵,並且相鄰的黏性圖標會合併成一個大圖標,對應更大的奬勵” 這樣子的分析呢
回覆刪除我猜你說的應該是這個玩法吧: https://youtu.be/_9FZm1ZwBdk?t=29
刪除--
玩法比較像的可以參考這款,不過這款沒有合併成大圖標的部分。
模型教學11 - Hold&Spin DiscoDanny(NetEnt)